The

Complete
Reference

\ﬁ‘ﬁ‘ijlirﬁjﬁ?f

e
[~

e
A

i

488 C++: The Complete Reference

you to manage run-time errors in an orderly fashion. Using exception handling,

your program can automatically invoke an error-handling routine when an error
occurs. The principal advantage of exception handling is that it automates much of the
error-handling code that previously had to be coded "by hand” in any large program.

This chapter discusses the exception handling subsystem. Exception handling allows

___| Exception Handling Fundamentals

C++ exception handling is built upon three keywords: try, catch, and throw. In the
most general terms, program statements that you want to monitor for exceptions
are contained in a try block. If an exception (i.e., an error) occurs within the try block,
it is thrown (using throw). The exception is caught, using catch, and processed. The
following discussion elaborates upon this general description.

Code that you want to monitor for exceptions must have been executed from
within a try block. (Functions called from within a try block may also throw an
exception.) Exceptions that can be thrown by the monitored code are caught by a
catch statement, which immediately follows the try statement in which the exception
was thrown. The general form of try and catch are shown here.

try |
// try block

}

catch (typel arg) {
/ / catch block

}

catch (type2 arg) {
/ / catch block

}

catch (type3 arg) |
/ / catch block

}

;:atch (typeN arg) |
/ / catch block
!

The try can be as short as a few statements within one function or as all-
encompassing as enclosing the main() function code within a try block (which
effectively causes the entire program to be monitored).

Chapter 19: Exception Handling

When an exception is thrown, it is caught by its corresponding catch statement,
which processes the exception. There can be more than one catch statement associated
with a try. Which catch statement is used is determined by the type of the exception.
That is, if the data type specified by a catch matches that of the exception, then that
catch statement is executed (and all others are bypassed). When an exception is caught,
arg will receive its value. Any type of data may be caught, including classes that you
create. If no exception is thrown (that is, no error occurs within the try block), then no
catch statement is executed.

The general form of the throw statement is shown here:

throw exception;

throw generates the exception specified by exception. If this exception is to be caught,
then throw must be executed either from within a try block itself, or from any function
called from within the try block (directly or indirectly).

If you throw an exception for which there is no applicable catch statement, an
abnormal program termination may occur. Throwing an unhandled exception causes
the standard library function terminate() to be invoked. By default, terminate() calls
abort() to stop your program, but you can specify your own termination handler, as
described later in this chapter.

Here is a simple example that shows the way C++ exception handling operates.

// A simple exception handling example.
#include <iostream>

using namespace std;

int main()

{
8

cout << "Start\n";

try { // start a try block
cout << "Inside try blockin";
throw 100; // throw an error
cout << "This will not execute";
}
catch (int 1) { // catch an error
cout << "Caught an exception -- value is: ";
cout << 1 << "\n";

cout << "End";

489

490

C++: The Complete Reference

return 0;

This program displays the following output:

Start

Inside try block

Caught an exception -- value is: 100
End

Lock carefully at this program. As you can see, there is a try block containing three
statements and a catch(int i) statement that processes an integer exception. Within the try
block, only two of the three statements will execute: the first cout statement and the throw.
Once an exception has been thrown, control passes to the catch expression and the try block
is terminated. That is, catch is not called. Rather, program execution is transferred to it. (The

program's stack is automatically reset as needed to accomplish this.) Thus, the cout

statement following the throw will never execute.

Usually, the code within a catch statement attempts to remedy an error by taking
appropriate action. If the error can be fixed, execution will continue with the statements
following the catch. However, often an error cannot be fixed and a catch block will
terminate the program with a call to exit() or abort().

As mentioned, the type of the exception must match the type specified in a catch
statement. For example, in the preceding example, if you change the type in the
catch statement to double, the exception will not be caught and abnormal termination

will occur. This change is shown here.

// This example will not work.
#include <iostream>
using namespace std;

int main()
{

cout << "Start\n";

try { // start a try block
cout << "Inside try block\n";
throw 100; // throw an error
cout << "This will not execute";

)

catch (double i) { // won't work for an int
cout << "Caught an excepticon -- value is:

exception

7

Chapter 19: Exception Handling

cout << i << "\n";

cout << "End";

return 0;

This program produces the following output because the integer exception will not be
caught by the catch(double i) statement. (Of course, the precise message describing
abnormal termination will vary from compiler to compiler.)

Start
Inside try block
Abnormal program termination

An exception can be thrown from outside the try block as long as it is thrown by
a function that is called from within try block. For example, this is a valid program.

/* Throwing an exception from a function outside the
try block.

*/

#include <iostream>

using namespace std;

void Xtest (int test)

{
cout << "Inside Xtest, test is: " << test << "\n";
if(test) throw test;

int main()
{
cout << "Start\n";

try { // start a try block
cout << "Inside try block\n";
Xtest (0) ;
Xtest (1)
Xtest(2);

N

J
catch (int i) { // catch an error

491

492 C++: The Complete Reference

cout << "Caught an exception -- value is: ";

cout << 1 << "\n";

cout << "End";

return 0;

This program produces the following output:

Start

Inside try block

Inside Xtest, test is: 0

Inside Xtest, test is: 1

Caught an exception -- value is: 1
End

A try block can be localized to a function. When this is the case, each time the
function is entered, the exception handling relative to that function is reset. For
example, examine this program.

#include <iostream>
using namespace std;

// Localize a try/catch to a function.
void Xhandler (int test)
{
try{
if (test) throw test;
}
catch{int i) {
cout << "Caught Exception #: " << 1 << '\n';

int main()

{

cout << "Start\n";

Xhandler (1) ;

Chapter 19: Exception Handling 493

Xhandler(2);
Xhandler (0) ;
Xhandler (3) ;

cout << "End";

return 0O;

This program displays this output:

Start

Caught Exception #: 1
Caught Exception #: 2
Caught Exception #: 3
End

As you can see, three exceptions are thrown. After each exception, the function returns.
When the function is called again, the exception handling is reset.

It is important to understand that the code associated with a catch statement will
be executed only if it catches an exception. Otherwise, execution simply bypasses the
catch altogether. (That is, execution never flows into a catch statement.) For example,
in the following program, no exception is thrown, so the catch statement does not execute.

#include <iostream>
using namespace std;

int main()

{

cout << "Start\n";

try { // start a try block
cout << "Inside try block\n";
cout << "Still inside try block\n";
}
catch (int i) { // catch an error
cout << "Caught an exception -- value is: "

cout << 1 << "\n";

494 C++: The Complete Reference

ccout << "End";

return 0;

Start

Inside try block

Still inside try block
End

As you see, the catch statement is bypassed by the flow of execution.

Catching Class Types

An exception can be of any type, including class types that you create. Actually, in
real-world programs, most exceptions will be class types rather than built-in types.
Perhaps the most common reason that you will want to define a class type for an
exception is to create an object that describes the error that occurred. This information
can be used by the exception handler to help it process the error. The following
example demonstrates this.

// Catching class type exceptions.
#include <iostream>

#include <cstring>

using namespace std:

class MyException {
public:
char str_what[80];
int what;

MyException() { *str_what = 0; what = 0;)
MyException(char *s, int e) {

strepy (str_what, s);
what = e;

Chapter 19: Exception Handling

int main()
int 1;

try {
cout << "Enter a positive number: ";
cin >> 1i;
if (1<0)
throw MyException ("Not Positive", 1i);
}
catch (MyException e) { // catch an error
cout << e.str_what << ": ";
cout << e.what << "\n";

return 0O;

Here is a sample run:

Enter a positive number: -4
Not Positive: -4

The program prompts the user for a positive number. If a negative number is entered, an
object of the class MyException is created that describes the error. Thus, MyException
encapsulates information about the error. This information is then used by the exception
handler. In general, you will want to create exception classes that will encapsulate
information about an error to enable the exception handler to respond effectively.

Using Multiple catch Statements

As stated, you can have more than one catch associated with a try. In fact, it is common
to do so. However, each catch must catch a different type of exception. For example,
this program catches both integers and strings.

#include <iostream>
using namespace std;

// Different types of exceptions can be caught.

495

496 C++: The Complete Reference

void Xhandler (int test)
{
try{
if(test) throw test;
else throw "Value is zero";
}
catch(int 1) {
cout << "Caught Exception #: " << i << "\n";
}
catch(const char *str) {
cout << "Caught a string: ";
cout << str << '\n‘;

int main()
{

cout << "Start\n';

Xhandler (1)
Xhandler (2);
Xhandler (0) ;
Xhandler (3)

’

’

cout << "End";

return O0;

Start

Caught Exception #: 1
Caught Exception #: 2

Caught a string: Value is zero
Caught Exception #: 2

End

As you can see, each catch statement responds only to its own type.
mgamemmhmmm%MMamdw&ahnmmmknnwm&dwymanma
program. Only a matching statement is executed. All other catch blocks are ignored.

Chapter 19: Exception Handling 497

___| Handling Derived-Class Exceptions

You need to be careful how you order your catch statements when trying to catch
exception types that involve base and derived classes because a catch clause for a
base class will also match any class derived from that base. Thus, if you want to
catch exceptions of both a base class type and a derived class type, put the derived
class first in the catch sequence. If you don't do this, the base class catch will also
catch all derived classes. For example, consider the following program.

// Catching derived classes.
#include <iostream>

using namespace std;

class B {

b

class D: public B {
Y

int main()
{

D derived;

try {
throw derived;
}
catch(B k) {
cout << "Caught a base class.\n";
}
catch(D c) {

cout << "This won't execute.\n";

return 0;

Here, because derived is an object that has B as a base class, it will be caught by the
{irst catch clause and the second clause will never execute. Some compilers will flag
this condition with a warning message. Others may issue an error. Either way, to

fix this condition, reverse the order of the catch clauses.

498 C++: The Complete Reference

___| Exception Handling Options

There are several additional features and nuances to C++ exception handling that make
it easier and more convenient to use. These attributes are discussed here.

Catching All Exceptions

In some circumstances you will want an exception handler to catch all exceptions
instead of just a certain type. This is easy to accomplish. Simply use this form of catch.

catch(...) {
/ / process all exceptions

}

Here, the ellipsis matches any type of data. The following program illustrates catch(...).

// This example catches all exceptions.
#include <iostream:»

using namespace std;

void Xhandler (int test)

try{

if(test==0) throw test; // throw int

if (test==1) throw 'a'; // throw char

if (test==2) throw 123.23; // throw double
}
catch(...) { // catch all exceptions

cout << "Caught One!\n";

int main()
cout << "Start\n";
Xhanaler(0) ;
Xhandler (1) ;

Xhandler (2) ;

cout << "End";

Chapter 19: Exception Handling 499

return 0;

This program displays the following output.

g Start

Caught One!
Caught One!

Caught One!
End

As you can see, all three throws were caught using the one catch statement.

One very good use for catch(...) is as the last catch of a cluster of catches. In this
capacity it provides a useful default or "catch all" statement. For example, this slightly
different version of the preceding program explicity catches integer exceptions but
relies upon catch(...) to catch all others.

-// This example uses catch(...) as a default.
#include <iostream>
using namespace std;

void Xhandler(int test)
{
try{
if(test==0) throw test; // throw int
if(test==1) throw 'a'; // throw char
if(test==2) throw 123.23; // throw double
}
catch(int i) { // catch an int exception
cout << "Caught an integer\n";
}
catch(...) { // catch all other exceptions
cout << "Caught One!\n";

int main()
{

cout << "Start\n";

500

C++: The Complete Reference

Xhandler (0);
Xhandler (1) ;
Xhandler (2) ;

cout << "End";

return 0O;

The output produced by this program is shown here.

Start

Caught an integer
Caught One!
Caught One!

End

As this example suggests, using catch(...) as a defaultis a good way to catch all
exceptions that you don't want to handle explicitly. Also, by catching all exceptions,
you prevent an unhandled exception from causing an abnormal program termination.

Restricting Exceptions

You can restrict the type of exceptions that a function can throw outside of itself. In
fact, you can also prevent a function from throwing any exceptions whatsoever. To
accomplish these restrictions, you must add a throw clause to a function definition.
The general form of this is shown here:

ret-type func-name(arg-list) throw (type-list)
{

/]
}

Here, only those data types contained in the comma-separated type-list may be thrown
by the function. Throwing any other type of expression will cause abnormal program
termination. If you don't want a function to be able to throw any exceptions, then use
an empty list.

Attempting to throw an exception that is not supported by a function will cause the
standard library function unexpected() to be called. By default, this causes abort() to
be called, which causes abnormal program termination. However, you can specify your
own unexpected handler if you like, as described later in this chapter.

Chapter 19: Exception Handling 501

The following program shows how to restrict the types of exceptions that can be
thrown from a function.

// Restricting function throw types.
#include <iostream>

using namespace std;

// This function can only throw ints, chars, and doubles.
void Xhandler (int test) throw(int, char, double)
{

if (test==0) throw test; // throw int

if(test==1) throw 'a'; // throw char

if (test==2) throw 123.23; // throw double

int main()

{

cout << "start\n";

try{
Xhandler (0); // also, try passing 1 and 2 to Xhandler()
}
catch(int 1) {
cout << "Caught an integer\n";
}
catch(char c) {
cout << "Caught char\n";
}
catch(double d) {
cout << "Caught double\n";

cout << "end";

return C;

In this program, the function Xhandler() may only throw integer, character, and
double exceptions. If it attempts to throw any other type of exception, an abnormal
program termination will occur. (That is, unexpected() will be called.) To see an
example of this, remove int from the list and retry the program.

It is important to understand that a function can be restricted only in what types
of exceptions it throws back to the try block that called it. That is, a try block within a

502 C++: The Complete Reference

function may throw any type of exception so long as it is caught within that function.
The restriction applies only when throwing an exception outside of the function.
The following change to Xhandler() prevents it from throwing any exceptions.

// This function can throw NO exceptions!
¢ void Xhandler (int test) throw()

/* The following statements no longer work. Instead,
they will cause an abnormal program termination. */

if(test==0) throw test;

if(test==1) throw 'a';

if (test==2) throw 123.23;

—

Rethrowing an Exception

If you wish to rethrow an expression from within an exception handler, you may do so
by calling throw, by itself, with no exception. This causes the current exception to be
passed on to an outer try/catch sequence. The most likely reason for doing so is to
allow multiple handlers access to the exception. For example, perhaps one exception
handler manages one aspect of an exception and a second handler copes with another.
An exception can only be rethrown from within a catch block (or from any function
called from within that block). When you rethrow an exception, it will not be recaught
by the same catch statement. It will propagate outward to the next catch statement. The
following program illustrates rethrowing an exception, in this case a char * exception.

// Example of "rethrowing" an exception.
#include <iostream>
using namespace std;

void Xhandler ()

try |
throw "hello"; // throw a char *

}

catch(const char *) { // catch a char *
cout << "Caught char * inside Xhandler\n";
throw ; // rethrow char * out of function

Chapter 19: Exception Handling 503

int main()
{

cout << "Start\n";

try{
Xhandler () ;
}
catch(const char *) {
cout << "Caught char * inside main\n";

cout << "End";

return 0;

This program displays this output:

Start

Caught char * inside Xhandler
Caught char * inside main
End

___| Understanding terminate() and unexpected()

As mentioned earlier, terminate() and unexpected() are called when something goes
wrong during the exception handling process. These functions are supplied by the
Standard C++ library. Their prototypes are shown here:

void terminate();
void unexpected();

These functions require the header <exception>.

The terminate() function is called whenever the exception handling subsystem fails
to find a matching catch statement for an exception. It is also called if your program
attempts to rethrow an exception when no exception was originally thrown. The
terminate() function is also called under various other, more obscure circumstances.
For example, such a circumstance could occur when, in the process of unwinding the
stack because of an exception, a destructor for an object being destroyed throws an
exception. In general, terminate() is the handler of last resort when no other handlers
for an exception are available. By default, terminate() calls abort().

504 C++: The Complete Reference

The unexpected() function is called when a function attempts to throw an exception
that is not allowed by its throw list. By default, unexpected() calls terminate().

Setting the Terminate and Unexpected Handlers

The terminate() and unexpected() functions simply call other functions to actually handle
an error. As just explained, by default terminate() calls abort(), and unexpected() calls
terminate(). Thus, by default, both functions halt program execution when an exception
handling error occurs. However, you can change the functions that are called by
terminate() and unexpected(). Doing so allows vour program to take full control of the
exception handling subsystem.

To change the terminate handler, use set_terminate(), shown here:

terminate_handler set_terminate(terminate_handler newhandler) throw();

Here, newhandler is a pointer to the new terminate handler. The function returns a
pointer to the old terminate handler. The new terminate handler must be of type
terminate_handler, which is defined like this:

typedef void (*terminate_handler) ();

The only thing that your terminate handler must do is stop program execution. It must
not return to the program or resume it in any way.
To change the unexpected handler, use set_unexpected(), shown here:

unexpected_handler set_unexpected(unexpected_handler newhandier) throw();

Here, newhandler is a pointer to the new unexpected handler. The function returns a
pointer to the old unexpected handler. The new unexpected handler must be of type
unexpected_handler, which is defined like this:

typedef void (*unexpected_handler) ();

This handler may itself throw an exception, stop the program, or call terminate().
However, it must not return to the program.
Both set_terminate() and set_unexpected() require the header <exception>.
Here is an example that defines its own terminate() handler.

// Set a new terminate handler.
#include <iostream>

]

Chapter 19:

#include <cstdlib>
#include <exception>
using namespace std;

void my_Thandler () {
cout <<
abort () ;

"Inside new terminate handler\n";

int main{(}

{

// set a new terminate handler

set terminate (my _Thandler) ;

try {
cout << "Inside try bliockin":
throw 100; // throw an error

}

catch (double i) { // won't catch an int
/7

}

return 0;

Inside try block
Inside new terminate handler
abnormal program termination

Exception Handling

exception

The uncaught_exception() Function

The C++ exception handling subsystem supplies one other function that you may find

useful: uncaught_exception(). Its prototype is shown here:

bool uncaught_exception();

This function returns true if an exception has been thrown but not yet caught. Once

caught, the function returns false.

505

C++: The Complete Reference

___| The exception and bad_exception Classes

When a function supplied by the C++ standard library throws an exception, it will be
an object derived from the base class exception. An object of the class bad_exception
can be thrown by the unexpected handler. These classes require the header <exception>.

___| Applying Exception Handling

Exception handling is designed to provide a structured means by which your program
can handle abnormal events. This implies that the error handler must do something
rational when an error occurs. For example, consider the following simple program. It
inputs two numbers and divides the first by the second. It uses exception handling to
manage a divide-by-zero error.

#include <iostream>

using namespace std;
void divide(double a, double b);

int main()
{
double i, j;

do {
cout << "Enter numerator (0 to stop): ";
cin >> i;
cout << "Enter denominator: ";
cin >> 7;
divide (i, 3);
} while(i != 0);

return C;

void divide (double a, double b)
{

try {
if(!'b) throw o; // check for divide-by-zero
cout << "Result: " << a/b << endl;

}
catch (double b) {
cout << "Can't divide by zero.\n";

Chapter 19: Exception Handling

While the preceding program is a very simple example, it does illustrate the essential
nature of exception handling. Since division by zero is illegal, the program cannot
continue if a zero is entered for the second number. In this case, the exception is
handled by not performing the division (which would have caused abnormal program
termination) and notifying the user of the error. The program then reprompts the user
for two more numbers. Thus, the error has been handled in an orderly fashion and the
user may continue on with the program. The same basic concepts will apply to more
complex applications of exception handling.

Exception handling is especially useful for exiting from a deeply nested set of
routines when a catastrophic error occurs. In this regard, C++'s exception handling
is designed to replace the rather clumsy C-based setjmp() and longjmp() functions.

Remember, the key point about using exception handling is to provide an orderly
way of handling errors. This means rectifying the situation, if possible.

